6 research outputs found

    THE MANY WAYS OF WAKING UP FROM SLEEP - MOVING FORWARD THE ANALYSIS OF SLEEP MICROARCHITECTURE

    Get PDF
    One of the defining characteristics of sleep is that it is readily reversible towards wakefulness. This is exemplified in the common daily experience of waking up in the morning. My thesis studies sleep-wake transitions that are equally common and frequent, yet often not consciously perceived and neglected as random sleep perturbations of minor significance. Using mice as an experimental species, I find that healthy non-rapid-eye-movement sleep (NREMS), also named deep restorative sleep, is a dynamic brain state showing defined, periodically recurring moments of fragility. During these, diverse types of brief arousal-like events with various combinations of physiological correlates appear, including global or local cortical activation, muscle activity, and heart rate changes. Using a mice model of chronic neuropathic pain, I find that the rules I have identified in healthy sleep serve to identify previously unrecognized sleep disruptions that could contribute to sleep complaints of chronic pain patients. The experimental and analytical methods I have developed in these studies also helped in the identification of the neuronal basis of the fragility periods of NREM sleep. Together, my studies offer novel insights and analytical tools for the study of sleep-wake transitions and their perturbance in pathological conditions linked to sensory discomfort. More specifically, my work departed from recent findings that NREMS in mice is divided in recurring periods of sleep fragility at frequencies ~0.02 Hz, characterized by heightened arousability. Through analyzing the temporal distribution of brief arousal events termed microarousals, I hypothesized that these fragility periods could serve a time raster for the probing of spontaneous sleep perturbations. Motivated by the question of how sensory discomfort caused by pain affects sleep, I have used the spared nerve injury (SNI) model, which consists in the injury of two of the 3 branches of the sciatic nerve. I found that the role of fragility periods in timing spontaneous arousals is highly useful to identify sleep disruptions not commonly detected with standard polysomnographic measures. Thus, by scrutinizing the fragility periods of NREMS in the SNI mice, I discovered an overrepresentation of a novel form of local perturbation within the hindlimb primary somatosensory cortex (S1HL), accompanied by heart rate increases. In addition, I showed that SNI animals woke up more frequently facing external stimuli, using closed-loop methods targeting specifically the fragility or continuity periods. These findings led me to propose that chronic pain-related sleep complaints may arise primarily from a perturbed arousability. The closed-loop techniques to probe arousability could be transferred to interrogate neuronal mechanisms underlying NREMS fragility, leading to the recognition that intrusion of wake-related activity into NREMS is a previously underappreciated mechanism controlling sleep fragility and architecture. Overall, I present my thesis to advance the view on NREMS as a dynamic heterogeneous state of which insights into its neuronal mechanisms, and its physio- and pathophysiological manifestations in animal models should be key to formulate testable hypotheses aimed to cure the suffering of sleep disorder in human. -- Une des caractĂ©ristiques qui dĂ©finit le sommeil, est que l’on peut rapidement retourner Ă  un Ă©tat d’éveil. De fait, nous l’expĂ©rimentons chaque matin au rĂ©veil. Ma thĂšse Ă©tudie les transitions sommeil-Ă©veil qui, bien que frĂ©quentes, sont souvent non consciemment perçues et traitĂ©es comme des perturbations sans importance et alĂ©atoires du sommeil. En utilisant la souris comme modĂšle expĂ©rimental, je montre que le sommeil sans mouvements rapides des yeux (NREMS), Ă©galement appelĂ© le sommeil profond et rĂ©parateur, est un Ă©tat cĂ©rĂ©bral dynamique composĂ© de pĂ©riodes discrĂštes et rĂ©currentes de fragilitĂ© face Ă  des stimuli externe. Pendant celles-ci, plusieurs types d’évĂšnements associĂ©s Ă  des Ă©veils brefs apparaissent, combinant activation corticale, activitĂ© musculaire et/ou une hausse des battements cardiaques. Je dĂ©montre que la comprĂ©hension des transitions sommeil-Ă©veil physiologiques s’avĂšre utile pour Ă©tudier le sommeil de souris souffrant de douleurs neuropathiques chroniques. Ces souris prĂ©sentent un nouveau type de perturbations locales lors du sommeil, qui pourraient possiblement expliquer une partie des plaintes de mauvais sommeil exprimĂ©es par les patients souffrant de douleurs chroniques. Les mĂ©thodes analytiques et expĂ©rimentales que j’ai dĂ©veloppĂ©es dans ces Ă©tudes ont aussi aidĂ© Ă  l’identification des bases neuronales de la genĂšse des pĂ©riodes de fragilitĂ©s du sommeil NREM. En somme, mes Ă©tudes offrent des connaissances inĂ©dites et des mĂ©thodes d’analyses pour l’étude des transitions sommeil-Ă©veil et de leurs perturbations en conditions pathologiques. Une Ă©tude rĂ©cente du laboratoire a montrĂ© que le sommeil NREM est divisĂ© en pĂ©riodes de fragilitĂ© alternant avec des pĂ©riodes de non-fragilitĂ© (continuitĂ©), environ toutes les 50 secondes ce qui donne une frĂ©quence de 0.02 Hz. Les pĂ©riodes de fragilitĂ© sont caractĂ©risĂ©es par une hausse de « l’éveillabilitĂ© » ou propension Ă  s’éveiller. Ma premiĂšre observation est que les Ă©veils brefs, couramment appelĂ©s micro-rĂ©veils, prĂ©sentent une distribution temporelle hautement restreinte aux pĂ©riodes de fragilitĂ©. Ainsi, j’ai Ă©mis l’hypothĂšse que ces pĂ©riodes pourraient servir de moments spĂ©cialement choisis par le cerveau pour la mesure de potentielles perturbations spontanĂ©es. MotivĂ© par la question de comment les douleurs chroniques perturbent le sommeil, je l’ai analysĂ© chez un modĂšle de souris de douleurs neuropathique, le modĂšle de d’épargne du nerf sural (SNI). Le rĂŽle des pĂ©riodes de fragilitĂ© Ă  restreindre les micro- rĂ©veils s’est avĂ©rĂ© trĂšs utile pour dĂ©tecter de nouvelles formes de rĂ©action Ă  des perturbations qui ne sont pas Ă©videntes par des analyses classiques du sommeil. En effet, spĂ©cifiquement pendant ces pĂ©riodes de fragilitĂ©, j’ai dĂ©couvert une sur-reprĂ©sentation d’un nouveau type d’éveil local confinĂ© au cortex somatosensoriel primaire et accompagnĂ© d’une hausse du rythme cardiaque. De plus, en utilisant de nouvelles mĂ©thodes basĂ©es sur des boucles-fermĂ©es, j’ai dĂ©montrĂ© que les souris SNI se rĂ©veillaient plus frĂ©quemment que leurs contrĂŽles en faisant face Ă  des stimuli externes. Sur la base de ces dĂ©couvertes, je propose que les plaintes de mauvais sommeil chez les patients souffrant de douleurs chroniques puissent prendre leur source dans une Ă©veillabilitĂ© perturbĂ©e. Les mĂ©thodes de boucles-fermĂ©es pour analyser l’éveillabilitĂ© a aussi pu ĂȘtre transfĂ©rĂ©e pour l’étude optogĂ©nĂ©tique des mĂ©canismes neuronaux Ă  la base de la fragilitĂ© du sommeil NREM. Cela a menĂ© Ă  la reconnaissance que l’intrusion d’activitĂ© normalement associĂ©e Ă  l’éveil dans le sommeil est un mĂ©canisme de contrĂŽle de sa fragilitĂ© et de son architecture souvent ignorĂ© dans le domaine. En somme, ma thĂšse permet une avancĂ©e de notre vision du sommeil NREM comme Ă©tant un Ă©tat dynamique et hĂ©tĂ©rogĂšne dont les mĂ©canismes neuronaux sous-jacent, en conditions normales et pathogĂ©niques, sont clefs pour la formulation d’hypothĂšses testables visant Ă  la guĂ©rison des patients souffrant de troubles du sommeil

    Cortico-autonomic local arousals and heightened somatosensory arousability during NREMS of mice in neuropathic pain.

    Get PDF
    Frequent nightly arousals typical for sleep disorders cause daytime fatigue and present health risks. As such arousals are often short, partial, or occur locally within the brain, reliable characterization in rodent models of sleep disorders and in human patients is challenging. We found that the EEG spectral composition of non-rapid eye movement sleep (NREMS) in healthy mice shows an infraslow (~50 s) interval over which microarousals appear preferentially. NREMS could hence be vulnerable to abnormal arousals on this time scale. Chronic pain is well-known to disrupt sleep. In the spared nerve injury (SNI) mouse model of chronic neuropathic pain, we found more numerous local cortical arousals accompanied by heart rate increases in hindlimb primary somatosensory, but not in prelimbic, cortices, although sleep macroarchitecture appeared unaltered. Closed-loop mechanovibrational stimulation further revealed higher sensory arousability. Chronic pain thus preserved conventional sleep measures but resulted in elevated spontaneous and evoked arousability. We develop a novel moment-to-moment probing of NREMS vulnerability and propose that chronic pain-induced sleep complaints arise from perturbed arousability

    Combining Leakage-Resilient PRFs and Shuffling Towards Bounded Security for Small Embedded Devices

    Get PDF
    Combining countermeasures is usually assumed to be the best way to protect embedded devices against side-channel attacks. These combinations are at least expected to increase the number of measurements of successful attacks to some reasonable extent, and at best to guarantee a bounded time complexity independent of the number of measurements. This latter guarantee, only possible in the context of leakage resilient constructions, was only reached either for stateful (pseudo-random generator) constructions, or large parallel implementations so far. In this paper, we describe a first proposal of stateless (pseudo-random function) construction, for which we have strong hints that security bounded implementations are reachable under the constraints of small embedded devices. Our proposal essentially combines the well-known shuffling countermeasure with a tweaked pseudo-random function introduced at CHES 2012.We rst detail is performances. Then we analyze it against standard differential power analysis and discuss the different parameters influencing its security bounds. Finally, we put forward that its implementation in 8-bit microcontrollers can provide a better security vs. performance tradeo than state-of-the art (combinations of) countermeasures

    Key Enumeration from the Adversarial Viewpoint: When to Stop Measuring and Start Enumerating?

    No full text
    In this work, we formulate and investigate a pragmatic question related to practical side-channel attacks complemented with key enumeration. In a real attack scenario, after an attacker has extracted side-channel information, it is possible that despite the entropy of the key has been significantly reduced, she cannot yet achieve a direct key recovery. If the correct key lies within a sufficiently small set of most probable keys, it can then be recovered with a plaintext and the corresponding ciphertext, by performing enumeration. Our proposal relates to the following question: how does an attacker know when to stop acquiring side-channel observations and when to start enumerating with a given computational effort? Since key enumeration is an expensive (i.e. time-consuming) task, this is an important question from an adversarial viewpoint. To answer this question, we present an efficient (heuristic) way to perform key-less rank estimation, based on simple entropy estimations using histograms

    Connecting and Improving Direct Sum Masking and Inner Product Masking

    No full text
    Direct Sum Masking (DSM) and Inner Product (IP) masking are two types of countermeasures that have been introduced as alternatives to simpler (e.g., additive) masking schemes to protect cryptographic implementations against side-channel analysis. In this paper, we ïŹrst show that IP masking can be written as a particular case of DSM. We then analyze the improved security properties that these (more complex) encodings can provide over Boolean masking. For this purpose, we introduce a slight variation of the probing model, which allows us to provide a simple explanation to the “security order ampliïŹcation” for such masking schemes that was put forward at CARDIS 2016. We then use our model to search for new instances of masking schemes that optimize this security order ampliïŹcation. We ïŹnally discuss the relevance of this security order ampliïŹcation (and its underlying assumption of linear leakages) based on an experimental case study
    corecore